26 research outputs found

    Electrical Optimization of a Plug-In Hybrid Electric Vehicle

    Get PDF
    Hybrid electric vehicles electrification and optimization is a prominent part of today’s automotive industry. GM and the Department of Energy challenge 16 universities across North America to redesign a Chevrolet Camaro into a hybrid electric vehicle. This thesis will address how Embry Riddle Aeronautical University’s EcoCAR team electrified and optimized the vehicle. The objective of the thesis is to optimize the electric portion of the vehicle, particularly the low voltage circuitry. Prior work is discussed in detail on the vehicle communication bus, building the power distribution unit and the approach the electrical team took when building the electric portion of the vehicle. Simulations were done based on manufacturer data and bench tests to create an ideal model. Data was collected from the vehicle and compared to the ideal model to determine errors in the electrical system. An emphasis was placed on critical and high power components to simplify the simulation model. The issues found were alleviated by conducting research, using research analysis, physically changing the system or by implementing control strategies. Most of the issues came from the power distribution unit and implementation techniques such as grounding. The MOSFETs within the power distribution unit was not fully turning on and off, and which was due to a slow RC time constant occurring on the gate of the transistors. By replacing the resistors, this issue was mitigated. Every problem found was properly mitigated to an acceptable industry or research standard

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    No full text
    <div><p>Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.</p></div

    Noncentrality and Power.

    No full text
    <p>Points indicate effects assuming no sharing of errors, dashes include the shared error effects. For reference the dotted lines show noncentrality parameters and power assuming that true dose rather than estimated dose was available for the study. Results are particular to the AVS data described herein.</p

    Effect of accounting for shared dosimetry errors on the length of standard errors in the high-sided calculations performed for the AVS study.

    No full text
    <p>The two dashed lines are based on ordinary least squares calculations and show the upper and lower bounds of a "naïve" confidence interval for slope parameter <i>b</i> (normalized by residual standard deviation, <i>σ</i>) ignoring inhomogeneous or shared errors. The solid lines show the effect of accounting for both inhomogeneous and shared error in expanding the confidence limits. The dot-dash lines between the dashed and solid lines shows the effect of adjusting for inhomogeneous errors but where there are no shared errors (off diagonals of matrix K are zero).</p

    Saliva diagnostics for oral diseases

    No full text
    Oral diseases, or stomatognathic diseases, denote the diseases of the mouth (“stoma”) and jaw (“gnath”). Dental caries and periodontal diseases have been traditionally considered as the most important global oral health burdens. It is important to note that in oral diagnostics, the greatest challenges are determining the clinical utility of potential biomarkers for screening (in asymptomatic people), predicting the early onset of disease (prognostic tests), and evaluating the disease activity and the efficacy of therapy through innovative diagnostic tests. An oral diagnostic test, in principle, should provide valuable information for differential diagnosis, localization of disease, and severity of infection. This information can then be incorporated by the physician when planning treatments and will provide means for assessing the effectiveness of therapy

    Acyl-Trafficking During Plant Oil Accumulation

    No full text
    Vegetable oils are an extremely important agricultural commodity. Their use has risen inexorably for the last 50 years and will undoubtedly be even more prevalent in the future. They have a role not only in foodstuffs but also as renewable chemicals. However, our understanding of their metabolism, and particularly its control, is incomplete. In this article we highlight current knowledge and its deficiencies. In particular, we focus on the important role that phosphatidylcholine plays in lipid accumulation and in influencing the quality of the vegetable oils produced
    corecore